Comparison of DNS of compressible and incompressible turbulent droplet-laden heated channel flow with phase transition

نویسندگان

  • A. Bukhvostova
  • E. Russo
  • B. J. Geurts
چکیده

Direct numerical simulation is used to assess the importance of compressibility in turbulent channel flow of a mixture of air and water vapor with dispersed water droplets. The dispersed phase is allowed to undergo phase transition, which leads to heat and mass transfer between the phases. We compare simulation results obtained with an incompressible formulation with those obtained for compressible flow at various low values of Mach number. We discuss differences in fluid flow, heatand mass transfer and dispersed droplet properties. Results for flow properties such as mean velocity obtained with the compressible model converge quickly to the incompressible results in case the Mach number is reduced. In contrast, thermal properties such as the heat transfer, characterized by the Nusselt number, display a systematic difference between the two formulations on the order of 15%, even in the low-Mach limit. This shows the necessity of the use of a compressible formulation for accurate prediction of heat transfer, even in case of an initial relative humidity of 100%. Mass transfer properties display a difference between the models on the order of 5%, for example in the prediction of the droplet mean diameter near the walls. 2014 Published by Elsevier Ltd.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heat and Mass Transfer in Turbulent Multiphase Channel Flow

Direct numerical simulation is used to assess the importance of compressibility in turbulent channel flow of a mixture of air and water vapor with dispersed water droplets. The dispersed phase is allowed to undergo phase transition, which leads to heat and mass transfer between the phases. We compare simulation results obtained with an incompressible formulation with those obtained for compress...

متن کامل

Evaluation of two lattice Boltzmann methods for fluid flow simulation in a stirred tank

In the present study, commonly used weakly compressible lattice Boltzmann method and Guo incompressible lattice Boltzmann method have been used to simulate fluid flow in a stirred tank. For this purpose a 3D Parallel code has been developed in the framework of the lattice Boltzmann method. This program has been used for simulation of flow at different geometries such as 2D channel fluid flow an...

متن کامل

Low Mach number algorithm for droplet-laden turbulent channel flow including phase transition

In this study we propose a new numerical algorithm for droplet-laden turbulent channel flow with phase transitions at low Mach numbers. The carrier gas is treated as compressible flow. In order to avoid very small time steps at low Mach numbers that would arise from stability requirements associated with explicit time-stepping we propose a new semi-explicit time integration method, applied to t...

متن کامل

Numerical Simulation of Turbulent Subsonic Compressible Flow through Rectangular Microchannel

In this study, turbulent compressible gas flow in a rectangular micro-channel is numerically investigated. The gas flow assumed to be in the subsonic regime up to Mach number about 0.7. Five low and high Reynolds number RANS turbulence models are used for modeling the turbulent flow. Two types of mesh are generated depending on the employed turbulence model. The computations are performed for R...

متن کامل

Water circulation in non-isothermal droplet-laden turbulent channel flow

We propose a point-particle model for two-way coupling of water droplets dispersed in turbulent flow of a carrier gas consisting of air and water vapor. An incompressible flow formulation is applied for direct numerical simulation (DNS) of turbulent channel flow with a warm and a cold wall. Compared to simulations without droplets or with solid particles a significant increase in Nusselt number...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012